

MA Sustainable Forest Bioenergy Initiative

MA BEWG MWCC - Gardner, MA

April 30, 2008

Massachusetts Potential for Biomass Energy Crops

Regional Economic Impact Analysis: Energy from Forest Biomass

David T. Damery, Ph.D. David Timmons Geoffrey Allen

University of Massachusetts, Amherst Department of Natural Resources Conservation Department of Resource Economics

### Funders - Acknowledgement

- U.S. Dept. of Energy
- Massachusetts Technology Collaborative

### Background

- SFBI Elements
  - Forestry Infrastructure Development Industry Education and Outreach
  - State Forests Resource Planning, Mgt. & Infrastructure Improvements
  - Resource Assessment and Strategic Plan of Biomass Supply Infrastructure and Market
  - Forest Impact Assessment with Increased Residue Removals
  - Forest Industry Training and Economic Development Programs
  - Energy, Environment and Climate Integration State Positions and Public Outreach
  - Biomass Project and Market Development
  - Project Management and Reporting

#### MA Potential for Biomass Energy Crops

Sub-Task 1.3 Part 7.

#### Assess MA agricultural lands for dedicated crop opportunities

- Establish estimates for crop yields, production cost, price, opportunity costs (for switchgrass and willow).
- Characterize attributes of agricultural lands appropriate for dedicated energy crops.
- Estimate total MA acres appropriate for dedicated energy crops (growing conditions, set aside/protected lands, unproductive farmland, etc.)
- Recommend a plan for establishing dedicated energy crop trials.
- Prepare report documenting assessment of MA dedicated energy crops

# MA Potential for Biomass Energy Crops - Benefits

- Sustain and reinvigorate the agricultural economy;
- Can create traditional agricultural landscapes;
- Currently mown fields (maintenance) could be used to produce biomass crops;
- Some biomass crops (switchgrass) are adapted to smaller scale production appropriate for Massachusetts;
- Bulky and difficult to transport if Massachusetts is to use biomass energy, most of it must come from nearby.

### Research Methodology

- Biomass Crop Production Costs
- Assess Potential Biomass Energy Demand in 5county (W. Mass) area.
- Review crop production in 3 Scenarios
  - Switching of crops on existing farmland
  - Use of farmland that is no longer part of active farms
  - Conversion of some current forestland back to farmland



## Coppiced Willow

- Planting
- 3-4 years of growth to cutting
- 22 year stand life



# **Switchgrass**

- Planting
- Annual harvest (multiple passes)
- 10 year "perennial life"



### Potential of Crops - per acre

- Wood from the Forest lowest, low management
- Willow in the middle
- Switchgrass highest, but with intensive management and cost

# **Crop Comparison**

| Fuel       | Wood<br>Chips | Willow<br>Chips | Switch-<br>grass |
|------------|---------------|-----------------|------------------|
| Tons/acre  | 1.1           | 4.7             | 4.0              |
| Moisture   | 45%           | 45%             | 12%              |
| MMBtu/ton  | 9.3           | 8.8             | 13.8             |
| MMBtu/acre | 10.0          | 40.8            | 54.8             |

# Willow Costs (Tharakan, 2005)

|                          | Farm gate price/ton | Plant gate<br>price/ton |
|--------------------------|---------------------|-------------------------|
| Base yield               | \$24.04             | \$32.34                 |
| Base yield +<br>CRP      | \$13.59             | \$21.89                 |
| Increased yield          | \$21.45             | \$27.95                 |
| Increased yield<br>+ CRP | \$12.76             | \$19.56                 |

# **Switchgrass Production Costs**

(Duffy & Nanhou, 2002)

| Expense                        | Cost (\$ / hectare) |
|--------------------------------|---------------------|
| Establishment/seeding          | \$67.29             |
| Pre-harvest machinery & labor  | \$29.14             |
| Operating expense (fertilizer) | \$110.11            |
| Harvesting expense             | \$256.06            |
| Land rent                      | \$123.46            |
| TOTAL COST                     | \$586.06            |

# Switchgrass Production Yields

(Duffy & Nanhou, 2002)

| Yields and Costs           | M.C. = 12% |
|----------------------------|------------|
| Yield per ha, Mg           | 8.96       |
| Cost per Mg                | \$65.41    |
| Yield per acre, short tons | 3.99       |
| Cost per short ton         | \$59.46    |

# **Energy Cost for Crop Fuels**

|                         | Wood chips | Willow  | Switchgrass |
|-------------------------|------------|---------|-------------|
| Cost/ton,<br>farmgate   |            | \$24.04 | \$59.58     |
| Farm-plant<br>transport |            | \$8.30  | \$8.30      |
| Cost/ton,<br>Plant gate | \$30.75    | \$32.34 | \$67.88     |
| Moisture content        | 45%        | 45%     | 12%         |
| Mmbtu/ton               | 9.25       | 8.77    | 13.75       |
| Cost per<br>MMbtu       | \$3.32     | \$3.69  | \$4.94      |

# Demand Estimate (for illustration)

- 5 W. Mass counties use of coal and oil = 35.0 trillion Btu (140.7 trillion all of MA) (DOE 2004)
- New 165 MW Biomass electricity = 17.8 trillion Btu
- Upper limit 35.0 +17.8 = 52.8 trillion Btu

## Supply Scenarios (acreage)

- Scenario 1: 20% of Farmland
- Scenario 2: All "idle" farmland put into use
- Scenario 3: 20% of Forestland "reconverted" back to farming

# Biomass energy from Crops

|                            | Scenario 1 | Scenario 2 | Scenario 3 |
|----------------------------|------------|------------|------------|
| Farm acres                 | 66,968     | 59,694     | 566,959    |
| Biomass<br>tons/acre       | 3.0        | 3.0        | 3.0        |
| Million Btu/<br>ton        | 14.0       | 14.0       | 14.0       |
| Lost forest acres          |            |            | 566,959    |
| Biomass<br>tons/acre       |            |            | 1.1        |
| Million Btu/<br>ton        |            |            | 9.3        |
| Net Trillion<br>Btu supply | 2.8        | 2.5        | 18.1       |

### Break!













### Regional Economic Impact Study

- Regional Demand for Biomass Energy
- Designing a Massachusetts "Build-out" Scenario
- Construction and Operating Scenarios
- Chip Demand and Supply Infrastructure
- Economic Impacts Employment, Labor Income and Economic Output

# Electricity Demand - The Regional Market, 2015

- Renewable Energy Driven by RPS (CT, MA & RI)
- Biomass Energy a "bridge" technology, PV and Wind to follow

| Tot. Demand, GWh, CT,MA,RI  | 6,929 |
|-----------------------------|-------|
| Biomass portion of RPS      | 29%   |
| Biomass electricity, GWh    | 2,009 |
| MA Generation Percentage    | 65%   |
| MA Biomass Electricity, GWh | 1,306 |
| MA Biomass Generating, MW   | 165.7 |



# Designing a MA Biomass Related Build-out Scenario

- Two 50 MW plants (a la Schiller, Russell)
- Two 25 MW plants (other proposals)
- Three 5 MW combined heat and power (campus, MWCC...)
- 25 5MM Btu heat-only facilities

# Estimated Plant Construction Costs

- Variety of prior studies and expert opinion
- Adjusted to 2006 Dollars
- \$2,154,950 per MW
- Total Cost, 165 MW = \$377 Million

# Estimated Plant Operating Costs, 50 MW Plant (INRS 2002, revised)

|                       | \$ per MW (2006) |
|-----------------------|------------------|
| payroll               | 43,680           |
| Property taxes        | 16,800           |
| Supplies and services | 29,867           |
| maintenance           | 26,133           |
| Utlilities            | 31,733           |
| Total per MW          | 148,213          |
| Total for 50 MW plant | \$7,410,667      |



## Estimated Wood Chip Demand

| MW Electric capacity                | 165       |
|-------------------------------------|-----------|
| Plant capacity factor               | 90%       |
| Annual GWh/MW capacity              | 7.9       |
| Mbtu/GWh                            | 3,413     |
| Annual MMBtu/MW capacity, net       | 26,908    |
| Plant efficiency                    | 28%       |
| Annual MMBtu/MW capacity, gross     | 96,100    |
| MMBtu heat content/ton chips        | 9.25      |
| Ton chips/MW capacity               | 10,389    |
| Annual tons wood chip demand (elec) | 1,714,222 |
| Annual tons wood ship demand (heat) | 31,250    |
| Total Demand                        | 1,745,472 |

#### **Wood Chip Supply Curve (INRS)**



### Chip Supply Jobs - In The Woods

(Westbrook, Greene et al. 2006, Kingsley 2007)

- Knuckleboom loader & chipper
  - One crew member
- Trucking ferry chips from woods to plant
  - Two trucks, two drivers
- Additional felling, skidding and delimbing
  - 1.5 crew members
- 180 tons chips/day, 43,200 tons annually
- 24 NEW Crews needed = 109 jobs

# Chip Production Equipment

| Equipment              | Cost      | No. | %<br>chips | Total       |
|------------------------|-----------|-----|------------|-------------|
| Feller-buncher         | \$267,689 | 1   | 50%        | \$133,844   |
| Grapple skidder        | \$199,920 | 1   | 50%        | \$99,960    |
| Stroke-delimber        | \$366,165 | 1   | 50%        | \$183,083   |
| Knuckle-boom<br>loader | \$186,461 | 1   | 100%       | \$186,461   |
| Chipper                | \$597,400 | 1   | 100%       | \$597,400   |
| Trucks                 | \$142,140 | 2   | 100%       | \$284,280   |
| Total                  |           |     |            | \$1,485,028 |

#### **Economic Effects**

- Direct Jobs, in woods, in plant, construction
- Indirect Economy wide effects on business activities for off-site suppliers to the directly affected businesses.
- Induced household generated consumption of food, clothing, shelter and other goods/ services resulting from new payroll of directly effected businesses and suppliers

#### Construction Phase

#### Accrues over 5 Year construction period

|                                     | 5 WM<br>Counties | Rest of MA | Total<br>MA |
|-------------------------------------|------------------|------------|-------------|
| Jobs                                | 4,657            | 346        | 5,003       |
| Labor<br>Income<br>(\$mil.<br>2006) | \$225            | \$11       | \$236       |
| Output<br>(\$mil.<br>2006)          | \$430            | \$56       | \$486       |

# Operating - New Fuel Supply

|                                     | 5 WM<br>Counties | Rest of MA | Total<br>MA |
|-------------------------------------|------------------|------------|-------------|
|                                     | Courteres        |            | IM          |
| Jobs                                | 216              | 56         | 272         |
| Labor<br>Income<br>(\$mil.<br>2006) | \$8              | \$4        | \$12        |
| Output<br>(\$mil.<br>2006)          | \$39             | \$12       | \$51        |

# **Plant Operations**

|                                     | 5 WM<br>Counties | Rest of MA | Total<br>MA |
|-------------------------------------|------------------|------------|-------------|
| Jobs                                | 224              | 97         | 321         |
| Labor<br>Income<br>(\$mil.<br>2006) | \$14             | \$5        | \$19        |
| Output<br>(\$mil.<br>2006)          | \$18             | \$10       | \$28        |

#### Conclusions

- An Economic Opportunity
- Contributes significantly to RPS policy goals
- Need new logging capacity, what to do with sawlogs?